Preliminary Exam in Analysis June 2016

INSTRUCTIONS:

(1) There are three parts to this exam: I (measure theory), II (functional analysis), and III (complex analysis). Do three problems from each part.
(2) In each problem, full credit requires proving that your answer is correct. You may quote and use theorems and formulas. But if a problem asks you to state or prove a theorem or a formula, you need to provide the full details.

Part I. Measure Theory

Do three of the following five problems.
(1) (a) State the three convergence theorems for Lebesgue integrals: (1) the monotone convergence theorem; (2) Fatou's lemma; (3) the dominated convergence theorem.
(b) Use the monotone convergence theorem to prove Fatou's lemma.
(2) Suppose that $f: X \rightarrow \mathbb{R}$ is integrable on a measure space (X, \mathscr{F}, μ). Show that for any $\epsilon>0$ there is a strictly positive δ such that

$$
\int_{C}|f| d \mu \leq \epsilon
$$

for all measurable sets $C \in \mathscr{F}$ such that $\mu(C) \leq \delta$.
(3) Let (X, \mathscr{F}, μ) be a measure space and $0<p<\infty$. Suppose that $\left\{f_{n}\right\}$ is a sequence of L^{p}-integrable functions such that $f_{n} \rightarrow f$ almost everywhere and f is also L^{p}-integrable. If furthermore,

$$
\int_{X}\left|f_{n}\right|^{p} d \mu \rightarrow \int_{X}|f|^{p} d \mu
$$

show that

$$
\lim _{n \rightarrow \infty} \int_{X}\left|f_{n}-f\right|^{p} d \mu=0
$$

(4) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an L^{p}-integrable function on \mathbb{R} (with respect to the Lebesgue measure and $p \geq 1$). Define for $h>0$,

$$
f_{h}(x)=\frac{1}{2 h} \int_{x-h}^{x+h} f(t) d t .
$$

Show that $\left\|f_{h}\right\|_{p} \leq\|f\|_{p}$ and

$$
\lim _{h \rightarrow 0} \int_{\mathbb{R}}\left|f_{h}(x)-f(x)\right|^{p} d x=0
$$

(5) Let (X, \mathscr{F}, μ) be a measure space and f a nonnegative measurable function. Show that for all $p>0$,

$$
\int_{X} f^{p} d \mu=p \int_{0}^{\infty} t^{p-1} \mu\{f \geq t\} d t .
$$

Part II. Functional Analysis

Do three of the following five problems.
(1) Let $\mathcal{F}: L^{2}(\mathbb{R}, d x) \rightarrow L^{2}(\mathbb{R}, d x)$ denote the Fourier transform on \mathbb{R}. Let $f \in$ $C[0,1]$ and let

$$
F(\xi)=\mathcal{F}\left(f \mathbf{1}_{[0,1]}\right)(\xi)=\int_{0}^{1} e^{-i x \xi} f(x) d x
$$

(a) Show that $F(\xi)$ is a bounded analytic function of the real variable $\xi \in \mathbb{R}$ and find its Taylor expansion centered at $\xi=0$. What is the radius of convergence?
(b) Does there exist $f \in C[0,1]$ such that

$$
\int_{0}^{1} x^{n} f(x) d x= \begin{cases}1, & n=1 \\ 0, & n \geq 2 ?\end{cases}
$$

(2) Let H be a separable Hilbert space and let $T: H \rightarrow H$ be a compact self-adjoint linear operator. Prove that either $\|T\|$ or $-\|T\|$ is an eigenvalue of T. Also, define 'compact', 'self-adjoint', $\| T| |$ and 'eigenvalue'.
(3) Let H be an infinite dimensional separable Hilbert space. Let $T: H \rightarrow H$ be a compact injective operator. Can T be surjective? Prove that your answer is correct.
(4) Prove or disprove:
(a) There is a bounded linear function $\Lambda: L^{\infty}([-1,1]) \rightarrow \mathbb{R}$ such that $\Lambda u=$ $u(0)$ for bounded functions continuous at 0 .
(b) There is a bounded linear function $\Lambda: L^{\infty}([-1,1]) \rightarrow \mathbb{R}$ such that $\Lambda u=$ $u^{\prime}(0)$ for bounded functions which are differentiable at 0 .
(5) Let $1<p<\infty$ and let $f_{n} \in L^{p}([0,1], d x),\left\|f_{n}\right\|_{p} \leq 1$ and assume $f_{n} \rightarrow 0$ almost everywhere.
(a) Show that $f_{n} \rightarrow 0$ weakly in L^{p}. (Hint: Egorov).
(b) Is this always the case if $p=1$? If so, prove it; if not, give a counterexample.

Part III. Complex Analysis

Do three of the following five problems.
(1) (a) Show that all bijective analytic maps $f: \mathbb{C} \rightarrow \mathbb{C}$ are of the form $f(z)=$ $a z+b$ for complex numbers a, b with $a \neq 0$.
(b) Classify all injective analytic maps $f: \mathbb{C} \rightarrow \mathbb{C}$.
(2) (a) Show that for $w \in \mathbb{C}$ with $|w|>1$,

$$
\int_{0}^{2 \pi} \frac{w-e^{i \theta}}{w-e^{-i \theta}} d \theta=2 \pi\left(1-\frac{1}{w^{2}}\right) .
$$

(b) Compute the same integral as in (a) for $|w|<1$.
(3) Fix $a \in \mathbb{C}$ with $|a|<1$ and a positive integer n. How many roots does the equation

$$
z^{n}=a e^{-z-1}
$$

have in the unit disc $\mathbb{D}=\{z \in \mathbb{C}| | z \mid<1\}$? What are their multiplicities?
(4) Let $\mathbb{D}=\{z \in \mathbb{C}| | z \mid<1\}$ be the unit disc. Suppose that $f: \mathbb{D} \rightarrow \mathbb{C}$ is an analytic map satisfying $|f(z)|<R$ for some $R>0$. Show that

$$
\left|\frac{f(z)-f(0)}{R^{2}-\overline{f(0)} f(z)}\right| \leq \frac{|z|}{R}
$$

(5) Let D be a bounded domain in C and let φ be a bounded real-valued function on ∂D. Let $u: D \rightarrow \mathbb{R}$ be the Perron solution of the corresponding Dirichlet problem, namely
$u(z)=\sup \left\{v(z) \mid v \in C^{0}(\bar{D}), v\right.$ is subharmonic on $D, v \leq \varphi$ on $\left.\partial D\right\}$,
which is harmonic in D (you do not need to prove this). Assume:
(i) $0 \in \partial D$ and $\{|z-1| \leq 1\} \cap \bar{D}=\{0\}$.
(ii) $\varphi(0)=0$ and φ is continuous at 0 .

Show that:
(a) $z \mapsto \log |z-1|$ is a harmonic function on D.
(b) $u(z) \rightarrow 0$ as $z \rightarrow 0$.
(Hint: for (b) show that given $\epsilon>0$, there exists A sufficiently large such that $-\epsilon-A \log |z-1| \leq u(z) \leq \epsilon+A \log |z-1|$.)

