PRELIMINARY EXAM IN ANALYSIS JUNE 2016

INSTRUCTIONS:

(1) There are **three** parts to this exam: I (measure theory), II (functional analysis), and III (complex analysis). Do **three** problems from each part.

(2) In each problem, full credit requires proving that your answer is correct. You may quote and use theorems and formulas. But if a problem asks you to state or prove a theorem or a formula, you need to provide the full details.

Part I. Measure Theory

Do **three** of the following five problems.

- (1) (a) State the three convergence theorems for Lebesgue integrals: (1) the monotone convergence theorem; (2) Fatou's lemma; (3) the dominated convergence theorem.
 - (b) Use the monotone convergence theorem to prove Fatou's lemma.
- (2) Suppose that $f : X \to \mathbb{R}$ is integrable on a measure space (X, \mathscr{F}, μ) . Show that for any $\epsilon > 0$ there is a strictly positive δ such that

$$\int_C |f| \, d\mu \le \epsilon$$

for all measurable sets $C \in \mathscr{F}$ such that $\mu(C) \leq \delta$.

(3) Let (X, \mathscr{F}, μ) be a measure space and $0 . Suppose that <math>\{f_n\}$ is a sequence of L^p -integrable functions such that $f_n \to f$ almost everywhere and f is also L^p -integrable. If furthermore,

$$\int_X |f_n|^p \, d\mu \to \int_X |f|^p \, d\mu$$

show that

$$\lim_{n\to\infty}\int_X |f_n-f|^p\,d\mu=0.$$

(4) Let $f : \mathbb{R} \to \mathbb{R}$ be an L^p -integrable function on \mathbb{R} (with respect to the Lebesgue measure and $p \ge 1$). Define for h > 0,

$$f_h(x) = \frac{1}{2h} \int_{x-h}^{x+h} f(t) dt$$

Show that $||f_h||_p \le ||f||_p$ and

$$\lim_{h\to 0}\int_{\mathbb{R}}|f_h(x)-f(x)|^p\,dx=0.$$

(5) Let (X, \mathscr{F}, μ) be a measure space and f a nonnegative measurable function. Show that for all p > 0,

$$\int_X f^p \, d\mu = p \int_0^\infty t^{p-1} \mu \left\{ f \ge t \right\} \, dt.$$

Part II. Functional Analysis

Do **three** of the following five problems.

(1) Let $\mathcal{F} : L^2(\mathbb{R}, dx) \to L^2(\mathbb{R}, dx)$ denote the Fourier transform on \mathbb{R} . Let $f \in C[0, 1]$ and let

$$F(\xi) = \mathcal{F}(f\mathbf{1}_{[0,1]})(\xi) = \int_0^1 e^{-ix\xi} f(x) dx.$$

- (a) Show that $F(\xi)$ is a bounded analytic function of the real variable $\xi \in \mathbb{R}$ and find its Taylor expansion centered at $\xi = 0$. What is the radius of convergence?
- (b) Does there exist $f \in C[0, 1]$ such that

$$\int_0^1 x^n f(x) dx = \begin{cases} 1, & n = 1; \\ 0, & n \ge 2 \end{cases}$$

- (2) Let *H* be a separable Hilbert space and let $T : H \to H$ be a compact self-adjoint linear operator. Prove that either ||T|| or -||T|| is an eigenvalue of *T*. Also, define 'compact', 'self-adjoint', ||T|| and 'eigenvalue'.
- (3) Let *H* be an infinite dimensional separable Hilbert space. Let *T* : *H* → *H* be a compact injective operator. Can *T* be surjective? Prove that your answer is correct.
- (4) Prove or disprove:
 - (a) There is a bounded linear function $\Lambda : L^{\infty}([-1,1]) \to \mathbb{R}$ such that $\Lambda u = u(0)$ for bounded functions continuous at 0.
 - (b) There is a bounded linear function $\Lambda : L^{\infty}([-1,1]) \to \mathbb{R}$ such that $\Lambda u = u'(0)$ for bounded functions which are differentiable at 0.
- (5) Let $1 and let <math>f_n \in L^p([0,1], dx)$, $||f_n||_p \le 1$ and assume $f_n \to 0$ almost everywhere.
 - (a) Show that $f_n \to 0$ weakly in L^p . (Hint: Egorov).
 - (b) Is this always the case if p = 1? If so, prove it; if not, give a counterexample.

Part III. Complex Analysis

Do three of the following five problems.

- (1) (a) Show that all bijective analytic maps $f : \mathbb{C} \to \mathbb{C}$ are of the form f(z) = az + b for complex numbers a, b with $a \neq 0$.
 - (b) Classify all **injective** analytic maps $f : \mathbb{C} \to \mathbb{C}$.
- (2) (a) Show that for $w \in \mathbb{C}$ with |w| > 1,

$$\int_0^{2\pi} \frac{w - e^{i\theta}}{w - e^{-i\theta}} d\theta = 2\pi \left(1 - \frac{1}{w^2}\right).$$

- (b) Compute the same integral as in (a) for |w| < 1.
- (3) Fix $a \in \mathbb{C}$ with |a| < 1 and a positive integer *n*. How many roots does the equation

$$z^n = ae^{-z-1}$$

have in the unit disc $\mathbb{D} = \{z \in \mathbb{C} \mid |z| < 1\}$? What are their multiplicities?

(4) Let $\mathbb{D} = \{z \in \mathbb{C} \mid |z| < 1\}$ be the unit disc. Suppose that $f : \mathbb{D} \to \mathbb{C}$ is an analytic map satisfying |f(z)| < R for some R > 0. Show that

$$\left|\frac{f(z) - f(0)}{R^2 - \overline{f(0)}f(z)}\right| \le \frac{|z|}{R}.$$

(5) Let *D* be a bounded domain in C and let *φ* be a bounded real-valued function on ∂*D*. Let *u* : *D* → ℝ be the Perron solution of the corresponding Dirichlet problem, namely

 $u(z) = \sup\{v(z) \mid v \in C^0(\overline{D}), v \text{ is subharmonic on } D, v \leq \varphi \text{ on } \partial D\},\$

which is harmonic in *D* (you do not need to prove this). Assume:

- (i) $0 \in \partial D$ and $\{|z-1| \leq 1\} \cap \overline{D} = \{0\}$.
- (ii) $\varphi(0) = 0$ and φ is continuous at 0.

Show that:

- (a) $z \mapsto \log |z 1|$ is a harmonic function on *D*.
- (b) $u(z) \rightarrow 0 \text{ as } z \rightarrow 0$.

(Hint: for (b) show that given $\epsilon > 0$, there exists *A* sufficiently large such that $-\epsilon - A \log |z - 1| \le u(z) \le \epsilon + A \log |z - 1|$.)